Predicting the Credit Risk of Loans Using Data Mining Tools

Authors

Abstract:

 One of the most common causes or credit phenomenon that is taken into account for credit risk is the customer’s noncompliance with the commitments. Thus, by predicting the behavior of loan applicants, the growth rate of debts can be decreased. Hence, this study is conducted on corporate applicants for loans in one of the public banks in Iran. In this paper, the main elements comprising the customers’ behavior are selected with the help of categorized sample collection of 521 random samples from all corporate applicants. the process of data preparation, then, is accomplished by summarization, integration, and interpolation of some lost data. In the next step, 85 key performance indicators are selected for modeling. In order to measure the importance degree of the affecting elements on the customers’ behavior, the decision tree، neural net algorithms and Support Vector Machine were applied, the decision tree algorithm with 14 percent average absolute error, having the highest degree, was recognized as the top algorithm capable of assessing the probability of defaults. Finally, based on the available data and according to the results of the CHAID decision tree, contract maturity, amount of interest, number of installments, operating profit to asset, type of contract, average debt  in 3 months ago and loan amount are the most important indicators affecting the customers’ behavior. Taking these indicators into account, before granting the loans, could have a significant role in the prediction of the customers’ behavior and the related decision making.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Predicting Type2 Diabetes Using Data Mining Algorithms

Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...

full text

Predicting credit card customer churn in banks using data mining

In this paper, we solve the customer credit card churn prediction via data mining. We developed an ensemble system incorporating majority voting and involving Multilayer Perceptron (MLP), Logistic Regression (LR), decision trees (J48), Random Forest (RF), Radial Basis Function (RBF) network and Support Vector Machine (SVM) as the constituents. The dataset was taken from the Business Intelligenc...

full text

Predicting personal credit ratings using ubiquitous data mining

Ubiquitous data mining (UDM) is a methodology for creating new knowledge by building an integrated financial database in a ubiquitous computing environment, extracting useful rules by using diverse rule-extraction-based data mining techniques, and combining these rules. In this study, we built six credit rating forecasting models using traditional statistical methods (i.e., logistic regression ...

full text

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

full text

the study of practical and theoretical foundation of credit risk and its coverage

پس از بررسی هر کدام از فاکتورهای نوع صنعت, نوع ضمانت نامه, نرخ بهره , نرخ تورم, ریسک اعتباری کشورها, کارمزد, ریکاوری, gdp, پوشش و وثیقه بر ریسک اعتباری صندوق ضمانت صادرات ایران مشخص گردید که همه فاکتورها به استثنای ریسک اعتباری کشورها و کارمزد بقیه فاکتورها رابطه معناداری با ریسک اعتباری دارند در ضمن نرخ بهره , نرخ تورم, ریکاوری, و نوع صنعت و ریسک کشورها اثر عکس روی ریسک اعتباری داردو پوشش, وثی...

15 صفحه اول

Analyzing and Investigating the Use of Electronic Payment Tools in Iran using Data Mining Techniques

In today's world, most financial transactions are carried out using done through electronic instruments and in the context of the Information Technology and Internet. Disregarding the application of new technologies at this field and sufficing to traditional ways, will result in financial loss and customer dissatisfaction. The aim of the present study is surveying and analyzing the use of elect...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 38

pages  654- 625

publication date 2019-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023